CogSci 2016 Day 3 Personal Highlights

  • There is more to gesture than meets the eye: Visual attention to gesture’s referents cannot account for its facilitative effects during math instruction (Miriam Novack, Elizabeth Wakefield, Eliza Congdon, Steven Franconeri, Susan Goldin-Meadow): Earlier work has shown that gestures can help kids learn math concepts, but this work explores one possible explanation for why this is so: that gestures attract and focus visual attention. To test this, kids watched a video in which someone explained how to do a mathematical equivalence problem (a problem like 5 + 6 + 3 = __ + 3. For some kids, the explainer gestured by pointing to relevant parts of the problem as she explained; for others, she just explained (using the exact same speech as for the gesture-receiving kids). The researchers used eye tracking while the kids watched the videos and found that those who watched the video with gestures looked more to the problem (and less at the speaker) than who watched the video sans gesture. More importantly, those who watched the gesture video did better on a posttest than those who didn’t. The main caveat was that the kids’ eye patterns did not predict their posttest performance; in other words, looking more at the problem and less at the speaker while learning may have contributed to better understanding of the math principle, but not significantly; other mechanisms must also be underlying gesture’s effect on learning. 

    But in case you started to think that gestures are a magic learning bullet:

  • Effects of Gesture on Analogical Problem Solving: When the Hands Lead You Astray (Autumn Hostetter, Mareike Wieth, Keith Moreno, Jeffrey Washington): There’s a pretty famous problem for cognitive science tests studying people’s analogical abilities, referred to as Duncker’s radiation problem: A person has a tumor and needs radiation. A strong beam will be too strong and will kill healthy skin. A weak beam won’t be strong enough to kill the tumor. What to do? The reason this problem is used as a test of analogical reading is that participants are presented a different story – an army wants to attack a fortress (and the fortress is at the intersection of a bunch of roads), but there are mines placed on the roads leading up to it, so the whole army can’t pass down one road at a time. Yet if they only send a small portion of the army down a road, the attack will be too weak. The solve this by splitting up and all converging on the fortress at the same time. Now can you solve the radiation problem? Even though the solution is analogous (target the tumor with weak rays coming from different directions) people (college undergrads) usually still struggle. It’s a testament to how hard analogical reasoning is.
    But that’s just background leading to the current study, where the researchers asked: if people gesture while retelling the fortress story, will they have more success on the radiation problem? To test this, they had one group of participants that they explicitly told to gesture, one group that they told not to gesture, and a final group that they didn’t instruct at all regarding gestures. They found that the gesturers in fact did worse than non-gesturers, and after analyzing the things that people actually talked about in the different conditions, discovered that when people gestured, they tended to talk more about concrete details of the situation – for example, the roads and the fortress – and this focus on the perceptual features of the fortress story actually inhibited their ability to apply the analogical relations of that story to the radiation case.
    Taking this study into consideration with the previous one, it’s clear that gesture is not all good or all bad; there are lots of nuances of a situation that need to be taken into account and lots of open questions ripe for research.
  • tDCS to premotor cortex changes action verb understanding: Complementary effects of inhibitory and excitatory stimulation (Tom Gijssels, Daniel Casasanto): We know the premotor cortex is involved when we execute actions, and there’s quite a bit of debate about to what extent it’s involved in using language about actions. They used transcranial direct current stimulation – a method that provides a small electrical current to a targeted area of the brain – over the premotor cortex (PMC) to test for its involvement in processing action verbs (specifically, seeing a word or a non-word and indicating whether it’s a real English word). People who received PMC inhibitory stimulation (which decreases the likelihood of the PMC neurons firing) were more accurate for their responses about action verbs, while those who received PMC excitatory stimulation (increasing the likelihood of the PMC neurons firing). This at first seems paradoxical – inhibiting the motor area helps performance and exciting it hurts, but there are some potential explanations for this finding. One that seems intriguing to me is that since the PMC is also responsible for motor movements, inhibiting the area helped people suppress the inappropriate motor action (for example, actually grabbing if they read the verb grab), and as a consequence facilitated their performance on the word task; excitatory stimulation over the same area had the opposite effect. Again, this study makes it clear that something cool is going on in the parts of our brain responsible for motor actions when we encounter language about actions… but as always, more research is needed.

journey

  • Tacos for dinner. After three days of long, stimulating conference days, the veggie tacos at El Vez were so good that they make the conference highlight list.

For every cool project I heard about, there were undoubtedly many more that I didn’t get to see. Luckily, the proceedings are published online, giving us the printed version of all the work presented at the conference. Already looking forward to next year’s event in London!

Advertisements

CogSci 2016 Day 1 Personal Highlights

I stepped out of the airport Wednesday night and my glasses fogged up. Ah, what a reminder of the world that awaits outside southern California, where I’m immersed in my PhD work. I had arrived in Philadelphia for CogSci 2016 to be bombarded by fascinating new work on the mind and behavior and the clever researchers responsible for it.

With 9 simultaneous talks at any time and over 150 posters on display during each poster session, I of course only got to learn about a fraction of all that was there. Nonetheless, here are some projects that are still on my mind after day 1:

  • Cognitive biases and social coordination in the emergence of temporal language (Tessa Verhoef, Esther Walker, Tyler Marghetis): Across languages, people use spatial language to talk about time (i.e., looking forward to a meeting, or reflecting back on the past). How does this practice come about? To investigate language evolution on a much faster time scale than occurs in the wild, this team had pairs of participants use a vertical tool (I believe the official term was bubble bar, see below). to create a communication system for time concepts like yesterday and next year. The pairs were in separate rooms, so this new communication system was their only way of communicating. Each successive pair inherited the previous pair’s system, allowing the researchers to observe the evolution of the bubble bar communication system for temporal concepts. Over the generations, participants became more accurate at guessing the term their partner was communicating (as the bubble bar language was honed), and systematic mappings between space and time emerged; that is, although each chain ended up with pretty different systems, within a single chain people tended to use the top part of the bar to indicate the same types of concepts (i.e., past or future), and used systematic motions (for example, small rapid oscillations for relatively close times like tomorrow and yesterday and larger, slower oscillations for more temporally distant concepts).

    Screen Shot 2016-08-12 at 6.27.45 AM
    The bubble bar
  • Deconstructing “tomorrow”: How children learn the semantics of time (Katharine Tillman, Tyler Marghetis, David Barner, Mahesh Srinivasan): This team had children of varying ages place time points (like yesterday and last week) on a timeline. They analyzed different features of the kids’ timelines to investigate at what age kids seem to understand three different concepts of time (or that they begin to understand these concepts in ways that adults do). The first was whether a time is in the past or future relative to now (did kids place it to the left or right of the now mark on the timeline?). The second aspect they looked at was whether kids understand sequences of different times – for example, that last week comes before (to the left on a timeline) yesterday (regardless of where those events were placed compared to now). Finally, they compared the way kids’ timelines showed remoteness – how temporally distant different events are from now – to how adults showed the same concept. Adults, for example, will place tomorrow quite close to the now mark and next year significantly farther away. They found that kids acquired an adult-like sense of remoteness much later than the first two – deictic (past vs. future) and sequence – concepts. While the latter two concepts reliably emerged in kids by 4 years old, but knowledge of remoteness wasn’t present until much later – after 7 years old. These data are an indication that while kids can pick up a lot of information about what different time words mean from the language they encounter, they may need formal education in order to really grasp that tomorrow is much closer to today than last year was.
  • Gesture reveals spatial analogies during complex relational reasoning (Kensy Cooperrider, Dedre Gentner, Susan Goldin-Meadow): After reading about positive feedback systems (i.e., an increase in A leads to an increase in B, which leads to more increase in A…) and negative feedback systems (an increase in A leads to an increase in B, which leads to a decrease in A), participants had to explain these complicated concepts. Even though the material that people read had almost no spatial language , spatial gestures were extremely common during their explanations (often occurring without any accompanying spatial language in speech). These gestures often built off each other, acting as a way to show relational information through space, and they suggest that people invoke spatial analogies in order to reason about complex relational concepts.

    Screen Shot 2016-08-12 at 6.49.08 AM.png
    Sample Gestures showing (from left to right) a factor reference, a change in a factor, a causal relation, and a whole system explanation.
  • Environmental orientation affects emotional expression identification (Stephen Flusberg, Derek Shapiro, Kevin Collister, Paul Thibodeau): Past work has shown us that we not only talk about emotions by using spatial metaphors (for example, I’m feeling down today, or your call lifted me up), but we also invoke these same aspects of space to think about emotions. In the first experiment, the researchers found that people were faster to say that a face was happy when it was oriented upwards and that it was sad when oriented downwards (both of which are considered congruent with the metaphor) than for the incongruent cases. Then, to differentiate between an egocentric (facing up or down with respect to the viewer’s body) and environmental (facing up or down with respect to the world) reference frames, people completed the same face classification task while lying on their sides. This time, they only showed the metaphor consistent effect (faster to say happy when faces were oriented up and to say sad when faces were oriented down) when the face was oriented with respect to the world – not when the orientation was with respect to the person’s own position. This talk won my surprising finding award for the day, since researchers often explain our association between emotion and vertical space as originating in our bodily experiences: we physically droop when we’re sad and we rise taller when we’re happy. That explanation isn’t consistent with what these researchers found, though, suggesting that people’s association between vertical space and emotions was critically an association involving vertical space with respect to their environment, and not their own bodies.
  • Context, but not proficiency, moderates the effects of metaphor framing: A case study in India (Paul Thibodeau, Daye Lee, Stephen Flusberg): People use metaphors they encounter to reason about complex issues. For example, when a crime problem is framed as a beast, they think that the town should take a more punitive approach to dealing with it than when that same problem is framed as a virus. What if you encounter this metaphor in English, but English isn’t your native language – does the metaphor frame influence your reasoning less than it would influence a native English speaker’s? People from India (all of whose native language was not English) read the metaphor frames embedded in contexts, and reasoned about the issues that were framed metaphorically. Overall, people reasoned in metaphor-consistent ways (i.e., saying that crime should be dealt with more punitively after it was framed as a beast than a virus). Their self-reported proficiency in English did not affect the degree to which people were influenced by the metaphor; people who were more fluent in English were not more swayed by the frames. However, the context in which they typically spoke English, did play a role: Those who reported using English mostly in informal contexts, such as with friends and family and through the media, were more influenced by the frames than those who reported using English more in formal contexts, like educational and professional settings. These experiments don’t explain why those who use English more in informal settings were more swayed by metaphorical frames than those who use the language more in formal settings, but it opens the door for some cool future research possibilities.

Check back for highlights from days 2 and 3!

What is this thing we call time?

What is this thing we call time?
In English it sits on a line.
How do we know?
Our gestures, they show
Future in front, past behind.

But this is not true for everyone
For Mayans’, word time same as sun
Time revolves like a turn
From which we did learn
Studying time is even more fun!

Image from Walker, E. & Cooperrider, K. (2015). The continuity of metaphor: Evidence from temporal Gestures.
Image from Walker, E. & Cooperrider, K. (2015). The continuity of metaphor: Evidence from temporal Gestures.

 

Inspired by Le Guen, O. & Pool Balam, L.I. (2012). No metaphorical timeline in gesture and cognition among Yucatec Maya. Frontiers in Psychology, 3: 271. doi:  10.3389/fpsyg.2012.00271