Chapter 2 TLDR Guide to Communicating Science Effectively: A Research Agenda

The National Academy of Science published a thorough (127-page) guide for communicating science effectively, with a detailed description of what the science of science communication has already revealed, but more importantly, with an agenda for the future of research on this topic. It’s long but useful, so I’ve broken it down into an abridged guide. Yesterday I posted my distillation of chapter 1, and today’s focus is chapter 2.


Chapter 2: The complexities of communicating science

Public engagement: seeking and facilitating the sharing and exchange of knowledge, perspectives, and preferences between or among groups who often have differences in expertise, power, and values

  • Public engagement is important for goals of generating excitement, sharing info needed for a decision, and finding common ground on an issue among diverse stakeholders.

Challenges posed by scientific content

Uncertainty. People generally dislike uncertainty and avoid ambiguity. As a result, it might seem like avoiding talking about the uncertainty inherent in science will be a productive way to communicate. However, avoiding discussion of uncertainty is a problem too, since it creates a false sense of certainty among people, and if (or when) new findings arise that require original information to be revised, people are likely to lose trust in the communicators. So far, presenting relevant narratives seems to be an effective way to engage audience with scientific issues, helping them to remember and process the information, but we need more research on the role of narratives for communicating science and on broader best practices for communicating scientific uncertainty.

uncertainty
Lifescape series. Ambiguity or Opportunity? by ArtistIvanChew CC

Different audiences, different needs

Aspects of audiences that affect science communication help explain why the same information can be understood very differently by different people:

  • Prior knowledge of scienceScreen Shot 2016-12-18 at 3.22.01 PM.png
    Plus, scientific knowledge alone doesn’t necessarily lead to holding positive attitudes toward science. Instead, someone’s characteristics, background, values and beliefs, and the information they receive from the media all influence the role their scientific knowledge has on their attitudes.
  • Ability to understand numeric information
    When communication strategies rely on quantities, rates, or probabilities and they take into account that people (including scientists, particularly when the issue is outside their area of expertise) struggle to make sense of numeric information, they are often more successful than just presenting the numbers. In health communications, at least, the following strategies have proven helpful:

    • Don’t avoid the numbers – provide them.
    • Reduce the cognitive effort required by the consumer
    • Explain what the numbers mean
    • Draw attention to important information
  • Ways of interpreting new information
    Everyone has their own beliefs about that way the world works, and these beliefs play prominent roles in making sense of new information. We also rely heavily on mental shortcuts when we encounter new information:

    • Heuristics: We often believe information that is consistent with our preexisting beliefs and information that we encounter more often than inconsistent and less frequently encountered info.
    • Emotion: Our initial emotional reactions to new information can shape the way we continue to think about that information, and some research suggests that we tend to pay more attention to negative than positive information.
    • Motivated reasoning: We’re biased to make sense of information in a way that is consistent with our immediately accessible beliefs and feelings.
    • Cognitive dissonance: we’re able to hold two conflicting thoughts, but that often makes us feel uncomfortable, and we try to resolve that conflict for ourselves. If you really love Big Macs, for example, and you also know that health professionals say Big Macs are not good for you, you might feel some dissonance. You can either change your behavior (stop eating Big Macs) or justify your behavior by tweaking your belief (well, I walked into the restaurant instead of using the drive thru, so I got my exercise and can probably have the Big Mac OR well, those scientists are studying mice so really, does that apply to me? OR well, I’m poor and a Big Mac is cheap OR, or, or…).

Presenting information in different forms

The way we present information affects the way it’s received.

Framing is used when information is presented in one way to influence how people interpret it. When issues are communicated about in terms of being a priority or a problem, or when specific causes and solutions are focused on, the issue is being framed. Framing is an inherent part of persuasion and communication about complex topics: You can’t possibly present an issue in its entirety, so a communicator must decide what to highlight and what to downplay. When frames are relevant to the way a person already thinks about the world, they’re most likely to be influential.

  • Gain/loss framing: A 70% success rate and a 30% failure rate are mathematically the same, but depending on the context, may actually influence people in different ways. However, whether framing an issue in terms of potential gains or potential losses influences people more seems to vary based on the issue at hand, so we need more research to understand when each framing is most beneficial.
  • Emphasis framing: Complex issues are often presented as story lines that suggest different trains of thought, which in turn emphasize some features of an issue over others. In particular, scientific information is often presented in terms of personalized stories (episodes) or more generally (themes). Again, the issue at hand determines how productive emphasizing episodes vs. themes will be, so we need more research.

Trust and credibility of science communication

People primarily rely on different social information to figure out what and whom they believe about scientific issues:

  • Having common interests, in that the communicator and the audience both want the same outcome from the communication
    • This point relates to the earlier points on the ways we encounter new information. When scientific information conflicts with someone’s political ideology, they might not only reject the information, but their trust in the communicator might also decline.
  • Perceived expertise which is not equivalent to a communicator’s actual expertise.

Applying the lessons of large-scale science communication efforts

  • It’s important for audiences to receive sufficient exposure (aka, a lot) to information so that it can reach enough of the target audience and bring about change.
  • Communication that’s provided before people form strong opinions on a topic is likely to be more educational than communication after, so timing matters. It can be helpful to expose people early to counterarguments for the misinformation they may eventually receive, as a way of “inoculating” them from misinformation.
  • Duration is also crucial: “long-term and comprehensive approaches” will likely be successful and necessary for communication goals. Isolated attempts are not enough.

An overall theme of this chapter is that because of the many complexities of communicating science, “…an effective science communication strategy will be iterative and adaptable… it will evolve over time based on lessons learned about what is and is not working, as well as shifting needs and opportunities.” (p. 35)


Tomorrow I’ll post a condensed guide to Chapter 3: The Nature of Science-Related Public Controversies.

Advertisements

Communicating Science Effectively: A Research Agenda (Chapter 1 TLDR Guide)

Happy New Year! If one of your resolutions is to do better science communication this year, you might be interested in this 127-page guide for communicating science effectively published by the National Academy of Sciences. It’s thorough, filled with references to empirical work on science communication, especially about controversial topics (like climate change, energy, vaccines, obesity, and food safety). But it’s 127 pages. I’ve broken it down to share my greatest takeaways, and will post my TLDR guide to one chapter each day this week.


Chapter 1: Using science to improve science communication

science-communication.jpg
“What is this ‘science communication’ you speak of?” written by Sarah Boon

Most science communication rests on the assumption that when science is communicated well, the public has a better understanding of an issue and more science-backed attitudes toward the issue. But actually we don’t know this assumption is true.

Science communication can be broken down into different goals, and the particular goal at hand should be considered for communication efforts. The report listed:

  • Share findings and excitement for science
  • Increase appreciation for science as a useful way of understanding and acting in the world
  • Increase knowledge and understanding of science related to a specific issue that requires a decision
  • Influence opinions, behavior, and policy preferences to accord with scientific evidence
    • Related debate: Where should scientists draw the line for using science to persuade? Sometimes what may start out as science communication can become communication about policy or behaviors that lie outside the strict domain of science…
  • Learn about diverse groups’ perspectives about science for consideration in seeking solutions to societal problems

A common but misleading model of science communication is the deficit model.
Screen Shot 2016-12-18 at 2.59.34 PM.png

The deficit model is inaccurate for most science communication concepts since scientific “facts” are complex and can often be interpreted in different ways. Plus, there are often many mediators in science communication. Information doesn’t simply go from scientists to audience (often), but instead is first disseminated to different organizations, media, and others, who in turn add their own voice to the issue when communicating it. Plus, as mentioned earlier, communication of knowledge does not necessarily mean the communication goals will be achieved. And of course there are layers of complexity, for example that different messages will achieve different successes with different audiences.


I’ll blog about the next chapter tomorrow. It focuses on the complexity of communicating scientific information to provide scientists and communicators with explicit awareness of the challenges they face and begin to overcome them.