Brain + Body + World = Mind

Where does cognition come from? The most common claim is probably that cognition resides in the brain. But that can’t be enough. The idea of a bodiless brain is pretty disturbing – could a brain in a jar produce true cognition? The externalist (embodiment) philosophy maintains that the interaction among brain, body, and world is crucial;  these three components together give rise to the mind, and no one is sufficient on its own.

brain
Image: http://science.dodlive.mil/2013/07/17/brain-emulation-behavior-modeling-ai-in-healthcare/

 

The brain is the most obvious contributor to cognition. Neuroscience research is based in the idea that a better understanding of the brain will bring about a better understanding of thinking and behavior. Fuster demonstrates his belief in the primacy of the brain by claiming “our memories are networks of interconnected cortical neurons, formed by association, that contain our experiences in their connectional structure” (451). His use of the verb “to be” instead of phrases like “are created by” or “result from” exemplifies his commitment to the preeminence of the brain. Fuster explains complex cognitive phenomena in terms of their underlying brain events. For example, he describes working memory as a temporary activation of a network of perceptual and motor memories, or, more simply, as the product of neural events.

Image: http://science.dodlive.mil/2013/07/17/brain-emulation-behavior-modeling-ai-in-healthcare/
Image: http://science.dodlive.mil/2013/07/17/brain-emulation-behavior-modeling-ai-in-healthcare/

A number of researchers opposed to this brain-centered view advocate for the importance of the body in cognition. After all, every brain is situated in a body. Ballard emphasizes the vitality of the body. Specifically, he points out the central role that they eyes can play in a number of tasks requiring working memory. In one experiment, he showed participants a structure made of a number of different blocks. They had a resource area containing the same blocks they would need to duplicate the model, and were asked to do so in a separate workspace area. As they moved blocks from the resource area to the workspace area, participants looked back at the model much more than they should have if they had stored a representation of the model in working memory. In fact, the most common strategy was to look from the model, to the pick-up area, back to the model, and then to the drop area for each block. Thus, Ballard concludes, subjects used fixation as a deictic pointing device presumably because the computational costs of storing the model in memory (a cognitive task) were greater than the on-line costs of shifting their eyes. In sum, the paper provided a unique example of the connectedness of the physical body and the brain’s processes.

Just as brains are situated in bodies, bodies are situated in the world, so it is unsurprising that the world is likewise crucial for cognition. Spivey uses eye-movement experiments to demonstrate the role of the external visual environment in numerous types of cognition. In one especially persuasive experiment, participants listened to descriptions of spatiotemporally dynamic scenes while facing a large white screen. For example, they might hear a description of events unfolding in a skyscraper. Narration might start talking about an occurrence on a lower floor and continue describing events higher up sequentially. Even though subjects were looking at a blank screen, their eye movements corresponded with the direction of the description (in the case of the example, their eyes would shift upward with the description). Spivey argues that the physical eye movements are an integral part of language processing, and more broadly that physical movements enable many types of cognition.

Kirsh also presents numerous real-world examples of people’s use of their physical environments. Drawing from instances of people cooking, packing groceries at the supermarket, personal workshops and playrooms, and playing Tetris, he shows that the spatial arrangements we create in our own environments help simplify choices, perception, and computation. We simplify choices, for example, when we lay vegetables that need to be washed next to the sink because the proximity of the items makes the desired action (washing) more salient and undesired actions (like chopping) less salient. One way we simplify perception is by symbolically marking an object. He gives the example of a  woman who, after measuring an amount of butter and cutting the stick in two, laid her knife on the measured piece to act as a sort of reminder. Finally, a Tetris game demonstrates our ability to use our environment to simplify computation. Approximately 800 to 1800ms after a zoid enters the screen, people display a burst of rotations, presumably because actually rotating the zoid takes less time than mentally rotating it. Thus, he concludes, humans use a variety of strategies to optimize their environments for cognition in many tasks.

Image: http://www.edge-online.com/news/tetris-relieves-post-traumatic-stress/
Image: http://www.edge-online.com/news/tetris-relieves-post-traumatic-stress/

Mind can emerge only when brain, body, and world come together. In this sense, “mind is best measured by its capabilities, not by its capacities” (Spivey, p. 183). Although the brain is undeniably an important contributor to thought and behavior, the physical presence of neurons and their connections does not alone constitute cognition. The bodies in which brains are found and the worlds in which the bodies are found are also crucial components of the human mind and cognition. Evidence from a variety of contexts has shown the importance of embodiment, or as Spivey concisely noted, “it might just be that your mind is bigger than your brain” (p. 162).

Advertisements

A working definition of cog sci

With my college graduation just days away, it’s only natural that I’ve been doing quite a bit of introspecting: In what ways am I different from the 17-year old my parents dropped off at Vassar in 2009? How do my current beliefs and thoughts differ from those I had as I began my freshman year, and what aspects of my education have contributed to those developments? I think back to many of the classes I’ve taken over the four years: French, Latin, and Chinese, computer science, physiological psychology, the history of the English language, and anthropological linguistics come to mind. I feel that cumulatively, regardless of whether they counted towards the Cognitive Science major in the eyes of the Registrar, they have all contributed to my current understanding of the human mind.

In the fall, I’ll begin working on a PhD in cognitive science, so it seems just to expect myself to have a clear definition of the field. “It’s like psychology, right?” asks almost every curious relative, family friend, and dental hygienist I’ve encountered in the past. Others with more understanding of what cognitive science entails may see it as a lofty field, thinking about thinking, without practical applications. The conventional understanding of cognitive science, as articulated by Wikipedia, the hub of collective intelligence, is “the interdisciplinary scientific study of the mind and its processes.” While I certainly can’t disagree with this, such a pithy statement falls short for me.

The world is messy. I’ve always been tempted to impose order on it, applying logic to circumstances in which it may not belong, and I feel confident that I’m not alone in the propensity to reduce the world around me to causes and effects. However, causes and effects are meaningless in the absence of context, the world in which anything- and everything- occurs. Because this world is dynamic and constantly changing, explanatory reductions may be misguided; instead, context may be the only acceptable explanation for the perceptions and actions that we seek to understand. Cognitive science is, to me, the study of the mind- of any agent that perceives and acts in its world- that takes context as its starting point. In order to truly take context into account, the discipline necessarily draws from a number of fields, including psychology, philosophy, linguistics, anthropology, computer science and artificial intelligence, and neuroscience. Each field is simply one piece of the larger puzzle: alone, it has awkward edges and indiscernible shapes, but the amalgamation reveals a whole image that’s greater than the sum of all its parts.

On the first day of Introduction to Cognitive Science freshman year, I had no idea what cog sci was, except that “cognitive” meant something along the lines of “brain.” I created a Turing machine that could determine whether any string of x’s and y’s was a palindrome. All it needed was a set of rules, and the machine was infallible. But as soon as I added a z into the input string, it broke down completely: No Rule Defined, it told me. Because my human brain does not break down and halt in the middle of problem solving, it was evident to me that there aren’t Turing machines in our heads, but instead something else, something more complex than states and rules, that must shape how we think, sense, and act in the world.

Lessons on Chinese grammar, cultures of South American tribes, and programming a for-loop also triggered mind-related thoughts and curiosities in my foreign language, anthropology, and computer science classes. In Perception & Action, I learned more about ants than almost any human would desire to know. An ant colony is a miraculously intelligent system, another example of a product much greater than the sum of its parts. Context alone determines an individual ant’s role and how and when he will carry it out. The ant lives in a constantly changing world, but instead of causing a break down, as such a world would for a Turing machine, it encourages various behaviors that contribute to the colony’s overall success.

What does this mean for the study of human minds? It means that our perceptions, thoughts, and actions are inseparable from the contexts in which they occur. We are situated in the world, and numerous aspects of our world, like prior experiences, culture, and other people, play a prominent role in shaping what we may intuitively believe occurs only or primarily in our heads.

As I prepare to begin a new chapter in my Cognitive Science career, I expect (and hope) that my appreciation of context will color the ways in which I move forward. My devotion to the importance of context has taught me to question everything. It is important to question whether studies done under different circumstances (i.e., outside a lab) and with different subpopulations (i.e., not westernized college undergrads) may have resulted in different conclusions. It is important to question whether there may be ways of viewing the world that differ from my own view (i.e., as cyclical as opposed to linear, or correlational as opposed to causal) that may shape the research questions posed, methods employed, and findings extracted. I hope that by doing this, my mind will remain open to new possibilities, continually working toward achieving the most comprehensive understanding of the mind possible.